第五章 留数及其应用

第一讲 孤立奇点

数学与统计学院 易媛

主要内容

- 1 孤立奇点的定义
- 2 孤立奇点的分类
- 3 函数的极点与零点的关系
- 4 函数在无穷远点的性态

主要内容

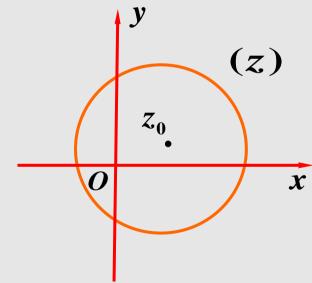
- 1 孤立奇点的定义
- 2 孤立奇点的分类
- 3 函数的极点与零点的关系
- 4 函数在无穷远点的性态

1 孤立奇点的定义

如果函数 f(z) 在 z_0 不可导,但在 z_0 的某一去心邻域 $0 < |z-z_0| < \delta$ 内处处解析,则称 z_0 为函数 f(z)的一个 孤立奇点.

例1:
$$z=0$$
 是 $e^{\frac{1}{z}}$ 和 $\frac{\sin z}{z}$ 的孤立奇点.

例2:
$$z = -1$$
 是 $\frac{1}{z+1}$ 的孤立奇点.



指出函数 $f(z) = \frac{1}{\sin \frac{\pi}{z}}$ 在 z = 0 的奇点特性.

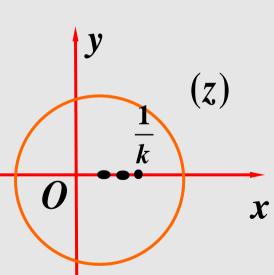
解:
$$\Rightarrow \sin \frac{\pi}{z} = 0$$
, $= \frac{\pi}{z} = k\pi$, $z = \frac{1}{k}, k = 1, 2, \dots$

且
$$\lim_{k\to\infty}\frac{1}{k}=0$$
,所以 $\forall \delta>0$,在

例3:

 $0 < |z| < \delta$ 内有无穷多个奇点,

即
$$z = 0$$
 不是函数 $\frac{1}{\sin^{\frac{\pi}{2}}}$ 的孤立奇点.



注: 若 z_0 为函数 f(z) 的孤立奇点,则由定义可知在 去心领域 $0 < |z-z_0| < \delta$ 内, 函数 f(z) 可展成洛朗级数

$$f(z) = \sum_{n=-\infty}^{n=\infty} c_n (z-z_0)^n$$
.因此,可根据洛朗级数中是否有负幂项来给孤立奇点进行分类。事实上,洛朗级数中所含 $(z-z_0)$ 负幂项部分反映了函数 $f(z)$ 在 z_0 点的奇异性质。

 $(z-z_0)$ 负幂项部分反映了函数 f(z) 在 z_0 点的奇异性质。

主要内容

- 1 孤立奇点的定义
- 2 孤立奇点的分类
- 3 函数的极点与零点的关系
- 4 函数在无穷远点的性态

2 孤立奇点的分类

(1) 可去奇点: 如果函数 f(z) 在 z_0 处的洛朗级数中不含

$$z-z_0$$
 的负幂项, 即当 $n=-1,-2,-3,\cdots$ 时 $c_n=0,$

则称孤立奇点 z_0 为 f(z) 的可去奇点.

$$f(z) = c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

这个幂级数的收敛半径至少为 $\delta > 0$, 和函数 S(z) 在 z_0 处解析.

无论 f(z) 在 z_0 是否有定义, 都可定义:

$$f(z_0) \triangleq c_0 = \lim_{z \to z_0} f(z) = S(z_0),$$

则在 $|z-z_0| < \delta$ 内解析, 且 $f(z) \equiv S(z)$.

反之,若f(z) 在 $0 < |z-z_0| < \delta$ 内解析,且极限

 $\lim_{z \to z_0} f(z)$ 存在,则取 $0 < \rho < \delta, C_\rho : |z - z_0| = \rho$ 由 $|f(z)| \le M$

因此
$$|c_n| = \frac{1}{2\pi i} \oint_{C_\rho} \frac{f(z)}{(z-z_0)^{n+1}} dz \le \frac{1}{2\pi} \cdot \frac{M}{\rho^{n+1}} \cdot 2\pi \rho = \frac{M}{\rho^n} \to 0 \quad (\rho \to 0, n < 0)$$

则 z_0 是 f(z) 的可去奇点.

定理1 设f(z) 在 $0 < |z-z_0| < \delta$ 内解析,则 z_0 是

$$f(z)$$
 的可去奇点 $\Leftrightarrow \lim_{z \to z_0} f(z) = c_0$, 其中 c_0 是有限复常数.

判别可去奇点的方法:

▶ 定义判断:

$$f(z) = c_0 + c_1(z - z_0) + \dots + c_n(z - z_0)^n + \dots$$

> 极限判断:

$$\lim_{z\to z_0} f(z) = c_0.$$

例4: 设 $f(z) = \frac{\sin z}{z}$, 由于 $\lim_{z\to 0} \frac{\sin z}{z} = 1$, 或者在 z = 0 的

去心邻域内有: $\frac{\sin z}{z} = \frac{1}{z}(z - \frac{z^3}{3!} + \frac{z^5}{5!} + \cdots)$ 不含 z 的负幂项,

则 z=0 为 $f(z)=\frac{\sin z}{z}$ 的可去奇点.

如果补充 $\frac{\sin z}{z}$ 在 z=0 的定义为1,则函数 $f(z)=\frac{\sin z}{z}$

在复平面上处处解析.

例5: 设 $f(z) = \frac{e^z - 1}{z}$,证明它在全平面解析.

解: 因为 $f(z) = 1 + \frac{1}{2!}z^1 + \frac{1}{3!}z^2 + \cdots$, 所以 z = 0 为

可去奇点. 如果补充 $\frac{e^z-1}{7}$ 在 z=0 的定义为1,则函数

 $f(z) = \frac{e^z - 1}{\tau}$ 在复平面上处处解析. 事实上:

$$\lim_{z\to 0}\frac{e^z-1}{z}=(e^z)'|_{z=0}=1.$$

(2) 极点: 如果函数 f(z) 在 z_0 处的洛朗级数中含有限个

 $z-z_0$ 的负幂项,即只有有限个(至少一个)整数 m>0,使得

 $c_{-m} \neq 0$, 则称孤立奇点 z_0 为 f(z) 的极点.

如果存在正整数 m, 使得 $c_{-m} \neq 0$, 而对于整数 n < -m, 有 $c_n = 0$, 则称 z_0 为 f(z) 的 m 级极点.

进一步洛朗级数为:

$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \frac{c_{-m+1}}{(z - z_0)^{m-1}} + \dots + \frac{c_{-1}}{z - z_0} + c_0 + c_1(z - z_0) + c_2(z - z_0)^2 + \dots$$

$$f(z) = \frac{1}{(z-z_0)^m} \left[c_{-m} + c_{-m+1}(z-z_0) + c_{-m+2}(z-z_0)^2 + \cdots \right],$$

$$\Rightarrow g(z) = c_{-m} + c_{-m+1}(z - z_0) + \dots + c_n(z - z_n)^{n+m} + \dots,$$

则
$$g(z)$$
 在 $|z-z_0| < \delta$ 内解析,且 $g(z_0) = c_{-m} \neq 0$,

即

$$f(z) = \frac{1}{(z-z_0)^m}g(z).$$

由此,可以建立利用极限判定孤立奇点是否为极点方法.

定理2 设f(z) 在 $0 < |z-z_0| < \delta$ 内解析,则 z_0 是

$$f(z)$$
 的极点 $\Leftrightarrow \lim_{z \to z_0} f(z) = \infty$.

证明:必要性显然,只需证明充分性.如果 $\lim_{z\to z_0} f(z)=\infty$,

则对 $\forall M > 0, \exists \rho_0 < \delta,$ 满足 $0 < |z - z_0| < \delta$ 时, |f(z)| > M.

令
$$F(z) = \frac{1}{f(z)}$$
,则 $\lim_{z \to z_0} F(z) = 0$,因此 z_0 要么为其可去

奇点, 要么为解析点, 所以

$$F(z) = c_1(z - z_0) + c_2(z - z_0)^2 + \dots + c_n(z - z_0)^n + \dots,$$

由 $F(z) \neq 0$,不妨设 $c_1 = c_2 = \cdots = c_{m-1} = 0, c_m \neq 0$

因此
$$F(z) = (z-z_0)^m [c_m + c_{m+1}(z-z_0) + \dots + c_{n-m}(z-z_0)^{n-m} + \dots]$$

则 $\varphi(z)$ 在 $|z-z_0| < \rho_0$ 内解析,且 $\varphi(z_0) = c_m \neq 0$,

$$f(z) = \frac{1}{(z-z_0)^m} \psi(z), \psi(z) = \frac{1}{\varphi(z)}$$

由此 $\psi(z)$ 在 $|z-z_0| < \rho_0$ 内解析,且 $\psi(z_0) = \frac{1}{c} \neq 0$.

判别函数极点的方法:

- ho 定义判别: f(z)的洛朗展开式中含有 $z-z_0$ 的有限项负幂项.
- \rightarrow 等价形式判别: 在点 z_0 的某去心邻域内有

$$f(z) = (z - z_0)^{-m} g(z) \ (m \ge 1),$$

其中 g(z) 在 z_0 的邻域内解析. 且 $g(z_0) \neq 0$.

▶ 极限判别:

$$\lim_{z \to z_0} f(z) = \infty.$$

例6: 函数 $f(z) = \frac{z-2}{(z^2+1)(z-1)^3}$, 求出奇点,并判别类型.

解:
$$z = \pm i$$
 和 $z = 1$ 是 $f(z)$ 的孤立奇点.
$$f(z) = (z-1)^{-3}(z-i)^{-1}(z+i)^{-1}(z-2),$$

所以,
$$z = \pm i$$
 是 $f(z)$ 的 1 级极点, $z = 1$ 是 $f(z)$ 的 3 级极点.

(3) 本性奇点: 如果函数 f(z) 在 z_0 处的洛朗级数中含有无穷多个系数非零的 $z-z_0$ 负幂项, 即存在无限个整数 n<0,使得 $c_n\neq 0$,则称孤立奇点 z_0 为 f(z) 的本性奇点.

$$f(z) = \frac{c_{-m}}{z^m} + \dots + \frac{c_{-1}}{z} + c_0 + c_1 z + \dots \quad (0 < |\mathbf{z}| < \delta),$$
 无穷多负幂项
$$f(z) = \frac{c_{-m}}{(z - z_0)^m} + \dots + \frac{c_{-1}}{z - z_0} + c_0 + c_1 (z - z_0) + \dots \quad (0 < |z - z_0| < \delta).$$

定理3 设f(z) 在 $0 < |z-z_0| < \delta$ 内解析,则 z_0 是

f(z) 的本性奇点 $\Leftrightarrow \lim_{z \to z_0} f(z)$ 不存在有限或无穷的极限.

Weierstrass得到了如下重要结论:

设 f(z) 在 $0 < |z-z_0| < \delta$ 内解析,如果 z_0 是 f(z) 的本性奇点,则对任何有限或无穷的复数 A 都存在点列 $\{z_n\}$,使得 $z_n \to z_0$,并且 $\lim_{n \to \infty} f(z_n) = A$.

注: 在本性奇点的无论怎样小的去心邻域内, 函数可以取以任意接近于预先给定的任何数值(有限的或无穷的).

例7: 证明 z = 0 是 e^{z} 和 \sin^{1} 的本性奇点.

$$e^{\frac{1}{z}} = 1 + \frac{1}{z} + \frac{1}{2!z^2} + \dots + \frac{1}{n!z^n} + \dots \quad (0 < |z| < +\infty),$$

$$\sin\frac{1}{z} = \frac{1}{z} - \frac{1}{3!z^3} + \frac{1}{5!z^5} - \cdots \left(0 < |z| < +\infty\right).$$
 无穷多负幂项

或
$$e^{\frac{1}{z}} = 1 = e^{0+2k\pi i}$$
, $\frac{1}{z_k} = 2k\pi i$, $z_k = \frac{1}{2k\pi i}$, $\lim_{k \to \infty} e^{\frac{1}{z_k}} = 1$

$$e^{\frac{1}{z}} = -1 = e^{\pi i + 2m\pi i}$$
, $z_m = \frac{1}{2m\pi i + \pi i}$, $\lim_{m \to \infty} e^{\frac{1}{z_m}} = -1$

综上所述:

孤立奇点	Laurent级数的特点	$\lim_{z\to z_0}f(z)$
可去奇点	无负幂项	存在且为 有限值
M 级极点	含有有限个负幂项 关于 $(z-z_0)^{-1}$ 的最高幂 为 $(z-z_0)^{-m}$	∞
本性奇点	含无穷多个负幂项	不存在且 不为 ∞

主要内容

- 1 孤立奇点的定义
- 2 孤立奇点的分类
- 3 函数的极点与零点的关系
- 4 函数在无穷远点的性态

3 函数的极点与零点的关系

引入: 如果 z_0 是 f(z) 的 m_1 级极点,则

$$f(z) = \frac{1}{(z-z_0)^m}g(z),$$

其中 g(z)解析且 $g(z_0) \neq 0$.因此可补充 z_0 定义,有

$$\frac{1}{f(z)} = (z - z_0)^m \frac{1}{g(z)},$$

 z_0 是 $\frac{1}{f(z)}$ 的零点,为此只需要讨论函数零点与极点

的关系,为判断函数的极点提供一个较为简便的方法。

.

m 级零点: 不恒为零的解析函数 f(z), 如果可以表示为

$$f(z) = (z - z_0)^m g(z)$$
, 其中 $g(z)$ 在 z_0 解析,并且 $g(z_0) \neq 0$ m 为正整数,则称 z_0 为 $f(z)$ 的 m 级零点.

定理4(零点判定定理)

若 f(z) 在 z_0 解析,则 z_0 为 f(z) 的 m 级零点

$$\Leftrightarrow f^{(n)}(z_0) = 0, f^{(m)}(z_0) \neq 0, n = 0, 1, 2, \dots, m-1$$

注: 利用解析函数的定义及泰勒定理,很容易验证定理的结论.

例8: 证明z=0 是函数 $f(z)=z-\sin z$ 的三级零点

证: 由于 $f'(z)|_{z=0} = (1-\cos z)|_{z=0} = 0$,

$$f''(z)|_{z=0} = \sin z|_{z=0} = 0, f'''(z)|_{z=0} = \cos z|_{z=0} = 1.$$

零点孤立性定理:一个不恒等于零的解析函数的零点是孤立的.

证明: 设 z_0 为函数 f(z) 的 m 级零点,由定义可知 $f(z) = (z - z_0)^m g(z), \quad \text{其中 } g(z) \text{在 } z_0 \text{ 解析,因此在 } z_0 \text{ 连续,}$ 并且 $g(z_0) \neq 0$,则由极限的保号性可知,存在 z_0 的一个邻域,使得在该领域内 $f(z) \neq 0$.

定理5(零点与极点的关系)

 z_0 是解析函数f(z)的m级极点 $\Leftrightarrow z_0$ 是 $\frac{1}{f(z)}$ 的m级零点.

注: 定理5将判定解析函数f(z)的极点问题转化为判定解析函数 $\frac{1}{f(z)}$ 的零点问题,为判定函数极点提供了一个简洁的方法.

例9:求函数 $f(z) = \frac{1}{\sin z}$ 的所有孤立奇点,如果是极点,指出 其级数.

解: $\sin z = 0 \Rightarrow z = k\pi, k = 0, \pm 1, \pm 2, \cdots$ 并且 $(\sin z)'|_{z=k\pi} = (-1)^k \neq 0$ 故 $z = k\pi$ 是 $\sin z$ 的一级零点,即为 $\frac{1}{\sin z}$ 的一级极点.

例10: 求 $f(z) = \frac{1}{\rho^z + 1}$ 的孤立奇点,并指出奇点的类型.

解:
$$z_k = (2k+1)\pi i \ (k=0,\pm 1,\pm 2,\cdots)$$
 是 e^z+1 的零点,

但是
$$(e^z+1)'=e^z$$
, $e^{(2k+1)\pi i}=-1\neq 0$,

故
$$z_k$$
 $(k = 0, \pm 1, \pm 2, \cdots)$ 是 $e^z + 1$ 的1级零点.

因此,
$$z_k$$
 $(k = 0, \pm 1, \pm 2, \cdots)$ 是 $f(z)$ 的1级极点.

例11: 考虑函数
$$f(z) = \frac{1-\cos z}{z^5}$$
.

设 $f(z) = \frac{P(z)}{Q(z)}$

推论:

若 z_0 是 P(z) 的m 级零点, 是 Q(z) 的n 级零点,

则当 n > m 时, z_0 是 f(z) 的 n - m 级极点;

而当n < m 时, z_0 是 f(z) 的可去奇点.

例12: 考虑函数 $f(z) = \frac{e^z - 1}{z^2}$.

z = 0 是 $e^z - 1$ 的 1 级零点, 是 z^2 的 2 级零点, 因此 z = 0 是 f(z) 的 1 级极点.

主要内容

- 1 孤立奇点的定义
- 2 孤立奇点的分类
- 3 函数的极点与零点的关系
- 4 函数在无穷远点的性态

4 函数在无穷远点的性态

讨论函数 f(z) 在扩充复平面 C^* 上无穷远点的性态,由于函数在无穷远点 ∞ 是没有定义的,所以点 ∞ 总是函数 f(z) 的一个奇点.

(1) 孤立奇点: 如果函数 f(z) 在 $z = \infty$ 的去心邻域

$$\overset{\circ}{U}(\infty) = \{z \mid 0 < R < \mid z \mid < \infty\}$$

内解析,则称 ∞ 为 f(z) 的孤立奇点。

注: 如果函数 $z = \infty$ 是 f(z) 的孤立奇点,作变换

$$z = \frac{1}{t}, \text{ 则 } \varphi(t) = f\left(\frac{1}{t}\right) \text{ 在去心邻域 } 0 < |t| < \frac{1}{R}$$

(或当 R=0 时, $0 < |t| < +\infty$) 内解析, 即 t = 0

是 $\varphi(t)$ 的孤立奇点.

类似地可以定义 $z = \infty$ 为 f(z) 的可去奇点、极点或本性奇点.

设 f(z) 在 $R<|z|<+\infty$ 内解析,且其 Laurent级数 $f(z)=\sum_{n=-\infty}^{\infty}c_{n}z^{n}.$

如果展开式中不含有z 的正幂项,则称 $z = \infty$ 是 f(z) 的可去奇点; 如果展开式中含有 z 的有限个正幂项 (至少含有一项),且最高次幂为m,则称 $z = \infty$ 是 f(z)的

m 级极点; 如果展开式中含有 z 的无穷多个正幂项, 则称 $z = \infty$ 是 f(z) 的本性奇点.

例13:
$$f(z) = \frac{z}{1+z}$$
 在 $U(\infty) = \{z \mid 1 < |z| < \infty\}$

内解析。故 Laurent级数展开式为:

$$f(z) = \frac{1}{1+\frac{1}{z}} = 1 - \frac{1}{z} + \frac{1}{z^2} - \frac{1}{z^3} + \dots + (-1)^n \frac{1}{z^n} + \dots$$

则 $z = \infty \mathbb{E}^{z} f(z)$ 的可去奇点。

$$f(z) = z + \frac{1}{z}$$
,则 $z = \infty$ 是 $f(z)$ 的一级极点。

$$f(z) = \sin z = z - \frac{z^3}{3!} + \frac{z^5}{5!} + \dots + (-1)^n \frac{z^{n+1}}{(n+1)!} + \dots$$

则 $z = \infty$ 是f(z)的本性奇点.

(2) 极限判别方法:

设 f(z) 在 $R < |z| < +\infty$ 内解析,则

(i) $z = \infty$ 是 f(z) 的可去奇点充分必要条件是存在极限 $\lim_{z \to \infty} f(z) = c_0$,其中 c_0 是有限复常数.

(ii) $z = \infty$ 是 f(z) 的极点充分必要条件是 $\lim_{z \to \infty} f(z) = \infty$,

(iii) $z = \infty$ 是 f(z) 的本性奇点充分必要条件是 $\lim_{z \to \infty} f(z)$ 不存在有限与无穷的极限.

例14: 函数 $f(z) = \frac{(z^2-1)(z-2)^3}{(\sin \pi z)^3}$ 在扩充复平面内

有些什么类型的奇点?如果是极点,指出其级数.

解: 函数除 $z = 0, \pm 1, \pm 2, \cdots$ 外, 处处解析 ($|z| < \infty$)

由于 $(\sin \pi z)' = \pi \cos \pi z$ 在 $z = 0, \pm 1, \cdots$ 处不为零

则 $z = 0, \pm 1, \dots$ 是 $\sin \pi z$ 的一级零点极点,故除 1,-1,2

外,这些点是f(z) 的3级极点.

又由于 $z^2 - 1 = (z + 1)(z - 1)$, 则 1, -1是 f(z) 的2级极点.

当z=2时, $\lim_{z\to 2} f(z) = \frac{3}{\pi^3}$, 则2是可去奇点.

当
$$z = \infty$$
时,由于
$$f(\frac{1}{t}) = \frac{(1-t)^2 (1-2t)^3}{t^5 \sin^3(\pi/t)}$$

则
$$t_n = \frac{1}{n} \to 0 (n \to \infty)$$
, $t = 0$ 不是孤立奇点.

因此 $z = \infty$ 不是 f(z) 的孤立奇点.